

■\_技术源自德国 驱动民族工业

C€ c¶ RoHS

### 中国-深圳

#### 深圳市德智高新有限公司

地址: 深圳市宝安区西乡鹤洲工业区华佳工

业园4栋3楼

# 中国-香港

#### 香港德智高新技术有限公司

地址:香港中环美国银行中心大厦 25 楼 2508A 室

# S-224D

# 数字型二相步进驱动器 用户手册

以匠心质造,驱动民族工业



版权所有 不得翻印 【使用前请仔细阅读本手册,以免损坏驱动器】

# S-224D 数字型二相步进驱动器 使用注意事项

# ■ 输入电压

本驱动器为直流电压输入, 电压范围 12~48VDC。

**注意:** 驱动器的输入电压越高,电机能够运行的速度越高,高速下的输出力矩越大,但相应电机的温升越高,发热越大,振动越大。因此,请根据实际应用选择合适的输入电压。

### ■ 供电电源要求

- ◆电源工作范围: S-224D(12~48VDC)保证驱动器正常工作。
- ◆若使用采用非稳压型电源(如环形变压器)供电,建议留足 20%的余量。例如若系统需要一个 100W 的电源,则建议挑选 120W 额定输出功率的电源。
- ◆若使用稳压型开关电源供电,建议留足 40%的余量。例如若系统需要一个 100W 的电源,则建议挑选 140W 额定输出功率的电源。

**! 注意:** 电源不可正负极反接。驱动器不具备电源正负极反接保护功能,正负极接反将导致烧坏驱动器中的保险管。因此,上电前请再次确认电源正负极接线正确。

# ■ 工作电流设定(P1:SW1~SW3)

SW1~SW3 三位拨码开关一共可设定 8 个电流级别(<u>0.3A~2.2A</u>)

**注意**:驱动器的峰值电流设置必须小于匹配电机的额定电流,否则可能导致电机温升过高,影响电机的使用寿命。

# ■ 待机电流设定 (P1:SW4)

待机电流可用 SW4 拨码开关设定。为 ON 时,半流,表示待机电流设为工作电流的 50%,为 OFF 时,全流,表示待机电流为工作电流的 90%。

一般应用中应将 SW4 设成 ON,使得电机和驱动器的发热减少,可靠性提高。脉冲串停止后约 1 秒左右电流自动减至一半左右(实际值的 60%),发热量理论上减至 36%。

#### ■ 细分设定 (P1:SW5~SW8)

SW5~SW8 四位拔码开关一共可以设定 16 档细分(200~25600 脉冲/圈)。

**注意**:细分可以提高每步分辨率,但主要作用不是提高电机精度,而是改善电机性能。

以二相步距角 1.8 度电机为例,假如电机为 3A,如果使用常规驱动器驱动该电机,电机每运行一步,其绕组内的电流将从 0 突变为 3A 或 3A 到 0,相电流的巨大变化,必然会引起电机运行的振动和噪音。如果使用细分驱动器,在 10 细分(2000 脉冲/圈)的状态下驱动该电机,每一电微步,其绕组内的电流变化只有约 0.3A 而不是 3A,且电流是以曲线规律变化的,这样就大大的改善了电机的振动和噪音。

#### ■ 控制信号输入电压

脉冲(PUL)/方向(DIR)/使能(ENA)信号(<u>5V~24VDC</u>兼容),用户无需外接限流电阻。

## ■ 适配电机

可驱动 4、6、8 线二相外径 42mm 及以下系列额定电流 "≥0.3A、≤2.2A" 步进电机。

一般说来, 电机的选择主要看电机扭矩和额定电流两方面。扭矩的大小取决于电机的尺寸, 尺寸大的电机扭矩也大; 电流大小主要取决于电感, 小电感的电流较大, 电机高速运转时性能较好。

# 注意

- (1) 不可电源正负极反接。
- (2) 不可带电插拔驱动器及电机端子。
- (3) 未经许可不可擅自更改驱动器及电机内部器件。
- (4) 不可在超出电气和环境要求下使用驱动器及电机。

# 目录

| 一、产品简介            | 4  |
|-------------------|----|
| 1、概述              | 4  |
| 2、产品特点            | 4  |
| 3、应用领域            | 5  |
| 二、电气、机械和环境指标      | 5  |
| 1. 电气指标           | 5  |
| 2. 使用环境及参数        | 5  |
| 3. 机械安装尺寸图(单位:mm) | 6  |
| 4. 加强散热方式         | 6  |
| 三、驱动器接口与接线介绍      | 7  |
| 1. 接口定义           | 7  |
| 2. 控制信号接口电路图      | 8  |
| 3. 控制信号时序图        | 9  |
| 四、驱动器参数设定         | 10 |
| 五、典型接线图           | 13 |
| 六、适配电机            | 15 |
| 七、故障诊断及排除         |    |
| 八、产品保修条款          |    |

# S-224D

# 数字型二相步进驱动器

# 一、产品简介

# 1、概述

S-224D 是汉德保(HamDerBurg)公司研发生产的一款智能型数字式步进驱动器。该驱动器搭载最新步进电机控制专用 DSP 芯片,基于空间矢量 PID 电流控制技术,内部集成参数自整定功能,具有优越的性能表现,高速大扭矩输出,低噪音,低振动,低发热,特别适合客户的大批量应用场合。

S-224D 驱动器可以通过 8 位拔码开关选择 8 种工作电流和 16 种细分,另外配有 4 位功能拔码开关,能灵活满足不同客户的多种控制需求。

## 2、产品特点

- ◆ 主控芯片 采用最新 32 位步进电机控制专用 DSP 芯片
- ◆ **电压电流** 输入电压: <u>12~48VDC</u>, 输出电流: <u>0.3A~2.2A</u> (峰值)
- ◆ 细分设置 16档细分可选(200~25600 脉冲/圈)
- ◆ 响应频率 脉冲响应频率最高可达 500KHz,默认出厂为 200KHz
- ◆ 信号电压 脉冲/方向/使能(<u>5V~24VDC</u>兼容), 无需另接限流电阻
- ◆ 控制方式 单脉冲(脉冲+方向),双脉冲(CW/CCW)
- ◆ 产品自检 拔码开关设置(电机以 30RPM 正反转反复运行)
- ◆ **共振抑制** 自动计算共振点,抑制中/低频振动
- **◆ 力矩平滑** 分析低速力矩纹波,抵消相应的谐波成份获得平滑的低速运动
- ◆ 信号平滑 对速度和方向信号的动态滤波,获得更稳定的系统表现
- ◆ **电流控制** PID 电流控制,高速大扭矩输出,低噪音,低振动,低发热
- ◆ **系统自测** 自检测匹配电机参数,根据负载情况实时优化输入电机电流
- ◆ **细分插补** 可降低运转时的振动,提高运行的平稳性
- ◆ **待机电流** 拔码开关设置,待机电流为工作电流的 50%或者 90%

### 3、应用领域

广泛应用于机械、电子、精密仪器、计量设备、医疗器械等自动化装备领域。例如:直线滑台、电子设备、光学仪器、激光设备、安防设备、电焊设备、点胶设备、自动装配设备等。在用户期望低噪音、中高速设备应用效果特佳。

### 二、电气、机械和环境指标

# 1. 电气指标

| 项目       | 电气规格 |      |      |     |
|----------|------|------|------|-----|
|          | 最小值  | 典型值  | 最大值  | 单位  |
| 输入电源电压   | 12   | 24   | 48   | VDC |
| 峰值输出电流   | 0.3  | -    | 2.2  | A   |
| 步进脉冲频率   | 2    | 200K | 500K | Hz  |
| 步进脉冲宽度   | 250  | -    | -    | ns  |
| 方向脉冲宽度   | 62.5 | -    | -    | μs  |
| 输入控制信号电压 | 3.3  | 5    | 28   | VDC |
| 控制信号导通电流 | 7    | 10   | 16   | mA  |
| 欠压保护点    | -    | 11   |      | VDC |
| 过压保护点    | -    | 41   |      | VDC |

# 2. 使用环境及参数

| 冷却方式 | 自然冷却或强制风冷   |                          |
|------|-------------|--------------------------|
|      | 使用场合        | 尽量避免粉尘、油雾及腐蚀性气体          |
| 使用环境 | 温度          | 0°C∼40°C                 |
| 区内であ | 湿度          | 40~90%RH(无凝露、未结霜)        |
|      | 振动          | 5.9 m/s <sup>2</sup> Max |
| 存储温度 | -10°C∼+70°C |                          |
| 重量   | 0.12Kg      |                          |

# 3. 机械安装尺寸图(单位:mm)



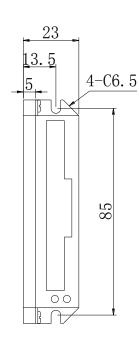



图 1 机械安装尺寸图

#### 4. 加强散热方式

- (1) 驱动器的可靠工作温度通常在60℃以内,电机工作温度为80℃以内;
- (2) 安装驱动器时请采用直立侧面安装,使散热器表面形成较强的空气对流; 必要时靠近驱动器处安装风扇,强制散热,保证驱动器在可靠工作温度 范围内工作。

### 三、驱动器接口与接线介绍

#### 1. 接口定义 a

### 1) 电机和电源输入端口

| 端子号 | 符号         | 名 称      | 说明                             |
|-----|------------|----------|--------------------------------|
| 1   | <b>V</b> + | 输入直流电源   | +12VDC~ +48VDC                 |
| 2   | V-         | 输入电源地    | 0V                             |
| 3   | <b>A</b> + | A 相电机绕组+ | 五格目 - 担核组的校伙司以本                |
| 4   | <b>A</b> - | A 相电机绕组一 | 互换同一相绕组的接线可以改<br>变电机的运行方向。     |
| 5   | B+         | B 相电机绕组+ | 文电机的运行方向。<br>  例如:将 A+和 A-接线互换 |
| 6   | В-         | B 相电机绕组一 | 例如: 付 A   仰 A   按线互换           |

#### 2) 控制信号端口

| 端子号 | 符号   | 名 称    | 说明                |
|-----|------|--------|-------------------|
| 1   | PUL+ | 脉冲输入正端 | <u>DC5~24V</u> 兼容 |
| 2   | PUL- | 脉冲输入负端 | <u>DC5~24V</u> 兼容 |
| 3   | DIR+ | 方向输入正端 | <u>DC5~24V</u> 兼容 |
| 4   | DIR- | 方向输入负端 | <u>DC5~24V</u> 兼容 |
| 5   | ENA+ | 使能输入正端 | <u>DC5~24V</u> 兼容 |
| 6   | ENA- | 使能输入负端 | 默认悬空使能            |

## 3) 状态指示

**绿色 LED** 为电源指示灯,当驱动器接通电源时,该 LED 闪烁;当驱动器切断电源时,该 LED 熄灭。

**红色 LED** 为故障指示灯,当出现故障时,该指示灯周期性循环闪烁;当故障被用户清除时,红色 LED 常灭。红色 LED 闪烁次数代表不同的故障信息,具体关系如下表所示:

#### ●红灯 ●绿灯

|   | 序号 | LED 闪烁样式     | 故障说明      | 解决办法    |
|---|----|--------------|-----------|---------|
|   | 1  | ● 绿灯长亮       | 驱动器未使能    | 给驱动使能信号 |
|   | 2  | ●● 绿灯闪烁      | 驱动器工作正常   |         |
|   | 3  | ●●●●● 3红2绿   | 内部电压出错    | 提高电源功率  |
|   | 4  | ●●●●● 4 红1绿  | 驱动器电源输入过压 | 降低电源电压  |
|   | 5  | ●●●●●● 5红1绿  | 驱动器过流     | 是否短路,错相 |
| 1 | 6  | ●●●●●● 4红2绿  | 驱动器电源输入欠压 | 提高电源电压  |
|   | 7  | ●●●●●●● 6红1绿 | 电机绕组开路    | 接好电机线   |

当驱动器出现故障时,驱动器将停机,并提示相应故障代码。用户需断电,并重新上电时,故障才可以清除,或者通过 ENA 脱机信号清除故障然后重新使能。当驱动器出现故障时,驱动器将按队列形式,将最新故障保存在驱动器的 EEPROM 内。

## 2. 控制信号接口电路图

# 1) 控制信号输入接口电路图

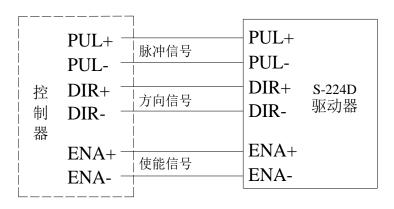



图 2(a) 差分方式控制信号接口接线图

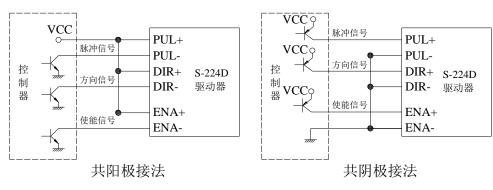
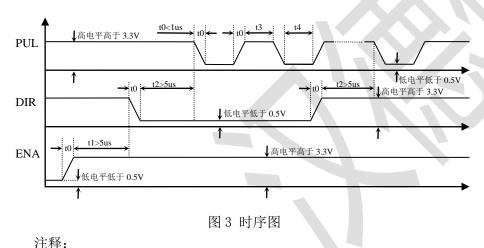




图 2(b) 单端方式控制信号接口接线图

! **注意:** 脉冲/方向/使能信号(5V~24VDC 兼容),用户无需外接限流电阻。

## 3. 控制信号时序图

为了避免一些误动作和偏差, PUL、DIR 和 ENA 应满足一定要求, 如图 3 所示:



(1) t1: ENA (使能信号) 应提前 DIR 至少 5μs, 确定为高。一般情况

下建议 ENA+和 ENA-悬空即可。

- (2) t2: DIR (方向信号) 至少提前 PUL 下降沿 5 μs 确定其状态高或低。
- (3) t3: PUL(脉冲信号)脉冲宽度至少不小于 2.5µs。
- (4) t4: 脉冲低电平宽度不小于 <u>2.5µs</u>。
- (5) t0: 输入信号边沿宽度应小于 1µs。

## 四、驱动器参数设定

S-224D 驱动器采用八位拨码开关(P1: SW1~SW8)设定工作电流、待机电流、细分精度等参数:



# 1、工作电流设定(P1:SW1~SW3)

用 P1:SW1~SW3 三位拨码开关一共可设定 8 个电流级别,参见下表。

| 输出峰值电流(A) | SW1 | SW2 | SW3 |
|-----------|-----|-----|-----|
| 0.3       | ON  | ON  | ON  |
| 0.5       | OFF | ON  | ON  |
| 0.7       | ON  | OFF | ON  |
| 1.0       | OFF | OFF | ON  |
| 1.3       | ON  | ON  | OFF |
| 1.6       | OFF | ON  | OFF |
| 1.9       | ON  | OFF | OFF |
| 2.2       | OFF | OFF | OFF |

**注意**:驱动器的峰值电流设置必须小于匹配电机的额定电流,否则可能导致电机温升过高,影响电机的使用寿命。

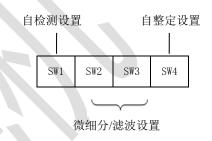
10

### 2、待机电流设定 (P1:SW4)

| 拔码开关 | 定义   | ON      | OFF     |
|------|------|---------|---------|
| SW4  | 待机电流 | 50%工作电流 | 90%工作电流 |

开关 P1:SW4 设置驱动器待机电流设定,电机在停止 1s 后驱动器自动减少供给电机的电流,输出为待机电流。

### 3、细分设定(P1:SW5~SW8)


| 脉冲/圈  | SW5 | SW6 | SW7 | SW8 |
|-------|-----|-----|-----|-----|
| 200   | ON  | ON  | ON  | ON  |
| 400   | OFF | ON  | ON  | ON  |
| 800   | ON  | OFF | ON  | ON  |
| 1600  | OFF | OFF | ON  | ON  |
| 3200  | ON  | ON  | OFF | ON  |
| 6400  | OFF | ON  | OFF | ON  |
| 12800 | ON  | OFF | OFF | ON  |
| 25600 | OFF | OFF | OFF | ON  |
| 1000  | ON  | ON  | ON  | OFF |
| 2000  | OFF | ON  | ON  | OFF |
| 4000  | ON  | OFF | ON  | OFF |
| 5000  | OFF | OFF | ON  | OFF |
| 8000  | ON  | ON  | OFF | OFF |
| 10000 | OFF | ON  | OFF | OFF |
| 20000 | ON  | OFF | OFF | OFF |
| 25000 | OFF | OFF | OFF | OFF |

**! 注意:** 细分可以提高每步分辨率,但主要作用不是提高电机精度,而是改善电机性能。

## 4、内部功能设定(P2:SW1~SW4)

S-224D 用四位拔码开关(P2: SW1~SW4)设置内部功能详细描述如下:





# ◆自检测设置 (P2:SWI):

设定开关 SW1 为 "ON", 驱动器上电后电机将 30RPM 的速度按先顺时针,再逆时针方向各旋转 2 圈,反复控制电机运行;

设定开关 SW1 为"OFF",关闭该功能,接收外部脉冲信号。

# ◆微细分、指令滤波设置 (P2: SW2~SW3):

| 微细分/滤波设置        | SW2 | SW3 |
|-----------------|-----|-----|
| 默认 (微细分)        | ON  | ON  |
| 25ms            | OFF | ON  |
| 12ms            | ON  | OFF |
| 指令滤波设置值(默认 6ms) | OFF | OFF |

## ◆自整定设置 (P2:SW4):

设定开关 SW4 为 "ON", 电机上电不自整定,采用默认参数;设定开关 SW4 为 "OFF", 电机上电自整定(出厂默认)。

### 五、典型接线图

由 S-224D 驱动器等构成的典型接线图如图 4 所示。

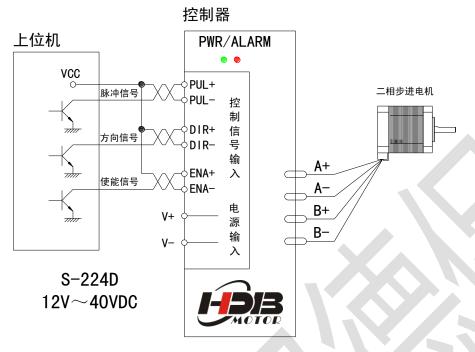
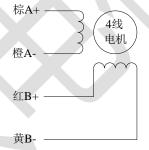
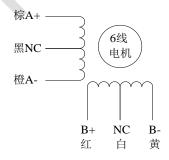



图 4 典型接线图

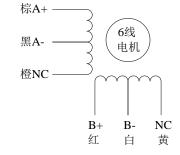

# 1、供电电源要求

- ◆电源正负极切勿接反!
- ◆电源工作范围: S-224D(12~48VDC)保证驱动器正常工作。
- ◆电源宜采用非稳压型直流电源,电源输出能力应大于驱动器设定电流的 60%。
- ◆若使用稳压型开关电源供电,电源的输出电流范围需大于电机工作电流。

### 2、电机接线


当驱动器与电机采取不同接线时,电机的运行效果有很大区别。通常,驱动器的供电电压决定了电机运行的高速性能(供电电压越大,高速力矩越大,可有效避免失步),设定电流值决定了电机的输出力矩(设定电流越大,电机输出力矩越大)。但是,供电电压大时,低速运转时的振动也较大;设定电流值大时,驱动器和电机的发热都很严重。因此,在实际使用中,用户应根据自身需要,采取合适的连接方式,以达到满意的效果。

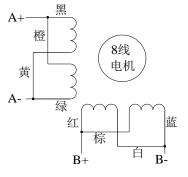
#### □4线双极性电机




四线电机只有一类接法,电机的二相分别和驱动器的 A 相和 B 相对应连接。设定电流应小于电机的额定电流。

# □6 线电机双极性接法








6 线双极性中心点连接

| 接法       | 电流设定        | 特点    |
|----------|-------------|-------|
| 双极性串联    | 低于额定电流的 70% | 低速大力矩 |
| 双极性中心点连接 | 小于额定电流      | 高速大力矩 |

# □8 线电机双极性接法





8 线双极性并联

8 线双极性串联

| 接法    | 电流设定                        | 特点           |
|-------|-----------------------------|--------------|
| 双极性串联 | 设定电流应小于电机的额定<br>电流值的 70%。   | 低速大力矩,高速力矩较小 |
| 双极性并联 | 设定电流应小于电机的额定<br>电流值的 1.4 倍。 | 高速大力矩输出      |

# 六、适配电机

15

S-224D 型二相步进驱动器适用于 4, 6, 8 线二相外径 42mm 及以下系列 额定电流 " $\geq 0.3A$ 、 $\leq 2.2A$ " 步进电机。

一般说来,电机的选择主要看电机扭矩和额定电流两方面。扭矩的大小取决于电机的尺寸,尺寸大的电机扭矩也大;电流大小主要取决于电感,小电感的电流较大,电机高速运转时性能较好。

对于某一给定接法的电机来说,电机的工作电流越大,输出转矩越大,电机发热也较严重;驱动器的供电电压越大,电机高速扭矩也越大;电机高速运行时的扭矩比中低速运行时的扭矩要小。

### 七、故障诊断及排除

| 序号 | 故障现象    | 故障原因      | 解决措施        |
|----|---------|-----------|-------------|
| 1  | 电源灯不亮   | 供电系统出错    | 检查供电线路      |
|    |         | 电源电压低     | 提高电源电压      |
| 2  | 电机不转    | 电流设定太小    | 重设电流        |
|    |         | 细分太小      | 重设细分        |
|    |         | 驱动器保护     | 重新上电        |
|    |         | 使能信号为低    | 拉高此信号或不接    |
|    |         | 未上电       | 重新上电        |
|    |         | 电线连线有误    | 检查连线        |
|    |         | 无脉冲信号输入   | 调整脉冲宽度和信号电平 |
| 3  | 电机转向错误  | 相序接反      | 互换任意一相的接线   |
|    |         | 线路断线      | 检查线路        |
|    | 报警指示灯亮  | 电机线接错     | 重新接线        |
| 4  |         | 电压过高或过低   | 调整电源电压      |
| 4  |         | 电机或驱动器损坏  | 检查电机和驱动器    |
|    |         | 驱动器过流     | 检查短路或错相     |
| 5  | 电机加速时堵转 | 加速度时间太短   | 加速时间加长      |
|    |         | 电机力矩太小    | 选大扭矩电机      |
|    |         | 电压偏低或电流太小 | 适当提高电压或电流   |
| 6  | 位置不准    | 信号受干扰     | 排除干扰        |
|    |         | 屏蔽未接地或未接好 | 可靠接地        |
|    |         | 电机线有断路    | 检查并接对       |
|    |         | 细分错误      | 设对细分        |
|    |         | 电流偏小      | 加大电流        |

电话: 400-9966-037 网址:www.hardboy.net 电话: 400-9966-037 网址:www.hardboy.net 16

### 八、产品保修条款

多年来,汉德保公司秉承"用心做好电机,树立品质意识为核心价值观。" 的经营理念,一直致力于微电机的控制研发与生产。

公司设有售后服务部,主要负责售后服务工作,技术咨询等工作。保证随时都有工程师提供各种技术服务。

我们承诺向我们的用户提供高品质的产品,出厂资料配件齐全;我们承诺向我们的用户提供优质及时的售前、售中、售后服务,了解和解决客户的问题。

#### 1 三年保修期

本公司销售所有产品自销售之日起,一个月内,出现故障,您可以选择修理、换货或退货。自销售之日起三年内如出现性能故障,您可以选择免费修理或换货。

如需现场技术支持,我公司提供无偿上门服务,如在硬件保修期外用户要承担相应更换硬件的成本,我公司不会追加其它费用。上门服务工程师如果遇到特殊情况当场不能解决,我们的服务工程师会和您协商,得到您的同意后将产品带回公司维修,维修好后无偿将产品返还。

#### 2 维修响应时间

在接到客户有关提供技术服务的要求时,我们的技术人员将在24小时内到 达现场,正常情况下在7个工作日内修复故障(含送修)。

在产品维修过程中,在7天内无法修复故障,为不影响用户使用,我公司将免费提供备机或代用备件使用。

安装调试完毕,组织有关使用人员进行实践操作和维护等免费培训,确保 使用方操作人员能独立、熟练地进行操作和基本的维修保养。

## 3 保修限制

17

- 人为划伤、磕碰或不恰当的接线,如电源正负极接反和带电拔插。
- 自然灾害等不可抗力(如地震、火灾)等原因造成的故障或损坏。
- 未经许可擅自更改内部器件。
- 超出电气和环境要求使用。
- 环境散热太差。

#### 4 质量保证

公司设有售后服务部,主要负责售后服务工作,技术咨询等工作。保证随时都有工程师提供各种技术服务。同时,我们的技术工程师将不定期的上门回访,协助客户解决问题。

我们的官方网站: http://www.hardboy.net 设有客户服务模块,提供超过十几种行业解决方案,并常年提供实时在线客户服务。